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Abstract
We propose a new systematic fibre bundle formulation of nonrelativistic
quantum mechanics. The new form of the theory is equivalent to the usual one
and is in harmony with the modern trends in theoretical physics and potentially
admits new generalizations in different directions. In it the Hilbert space of a
quantum system (from conventional quantum mechanics) is replaced with an
appropriate Hilbert bundle of states and a pure state of the system is described
by a lifting of paths or sections along paths in this bundle. The evolution of
a pure state is determined through the bundle (analogue of the) Schrödinger
equation. Now the dynamical variables and density operators are described via
liftings of paths or morphisms along paths in suitable bundles. The mentioned
quantities are connected by a number of relations derived in this paper.

In the third part of our series we investigate the bundle analogues of the
conventional pictures of motion. In particular, we find the state liftings and
observable liftings corresponding to state vectors and observables respectively
in the different pictures of motion. The equations of motion for these quantities
are derived. Using the results obtained, problems concerning the integrals of
motion are considered from the bundle viewpoint. Necessary and sufficient
invariant bundle conditions for a dynamical variable to be an integral of motion
are found.

PACS numbers: 02.40.Ma, 03.65.Ca, 03.65.Ta, 04.40.Ma

AMS classification scheme numbers: 81P05, 81P99, 81Q99, 81S99

1. Introduction

This paper is the third part of our series on fibre bundle formulation of nonrelativistic quantum
mechanics. It is a direct continuation of [1, 2].

1 http://theo.inrne.bas.bg/∼bozho/
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The paper is organized in the following way.
The bundle description of the different pictures of motion is presented in section 2. The

Schrödinger picture, which, in fact, was investigated in [1, 2], is reviewed in section 2.1.
Section 2.2 is devoted to the bundle Heisenberg picture. The corresponding equations of
motion for the observables are derived and discussed. In section 2.3 we investigate the ‘general’
picture of motion obtained by means of an arbitrary linear unitary transformation of the state
and observable liftings of paths. There we derive and discuss different equations for the state
liftings and observable liftings.

In section 3 we investigate problems concerning the integrals of motion from the fibre
bundle point of view. An interesting result here is that a dynamical variable is an integral of
motion iff the corresponding observable lifting is transported along the observer’s world line
by means of the transport along paths associated with the evolution transport.

Section 4 closes the paper.
The notation of this paper is the the same as that in [1, 2] and will not be repeated here.
The references to sections, equations, footnotes etc from [1, 2] are obtained from their

corresponding sequential reference numbers in [1, 2] by adding in front of them the Roman
one (I) or two (II), respectively, and a dot as a separator. For instance, section I.5 and (II.2.7)
mean respectively section 5 of [1] and equation (2.7) (equation (7) in section 2) of [2].

Below, for reference purposes, we present a list of some essential equations of [1,2] which
are employed in this paper. Following the above convention, we retain their original reference
numbers:

ψ(t2) = U(t2, t1)ψ(t1) (I.2.1)

ih̄
dψ (t)

dt
= H(t)ψ(t) (I.2.6)

H(t) = ih̄
∂ U(t, t0)

∂t
◦ U−1(t, t0) = ih̄

∂ U(t, t0)
∂t

◦ U(t0, t) (I.2.9)

〈 A〉tψ := 〈 A(t)〉ψ(t) := 〈 A(t)〉tψ := 〈ψ(t)| A(t)ψ(t)〉
〈ψ(t)|ψ(t)〉 (I.2.11)

�γ (t) = l−1
γ (t)(ψ(t)) ∈ Fγ(t) (I.4.3)

〈A‡
x→y�x |�y〉y := 〈�x |Ay→x�y〉x �x ∈ Fx �y ∈ Fy (I.3.7)

U†(t1, t2) = U−1(t2, t1) (I.5.4)

�γ (t) = Uγ (t, s)�γ (s) (I.5.7)

Uγ (t, s) = l−1
γ (t) ◦ U(t, s) ◦ lγ (s) s, t ∈ J (I.5.10)

U ‡
γ (t, s) = Uγ (t, s) = U−1

γ (s, t) (I.5.14)

ih̄
dΨγ (t)

dt
= Hm

γ (t)Ψγ (t) (II.2.12)

Γγ (t) := [
�ba(t; γ )

] = − 1

ih̄
Hm

γ (t) (II.2.22)

D
γ
t � = 0 (II.2.25)

Aγ (t) = l−1
γ (t) ◦ A(t) ◦ lγ (t):Fγ(t) → Fγ(t) (II.3.1)
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〈A〉t,γ� = 〈
Aγ (t)

〉t
�γ

= 〈�γ (t)|Aγ (t)�γ (t)〉γ (t)
〈�γ (t)|�γ (t)〉γ (t) (II.3.2)

〈 A(t)〉tψ = 〈Aγ (t)〉t�γ
(II.3.3)

[D̃γ
t (C)] = d

dt
Cγ (t) +

[
Γγ (t),Cγ (t)

]
− . (II.2.33)

2. Pictures of motion from bundle viewpoint

The different pictures (or representations) of motion of a quantum system [3, chapter 8,
sections 9, 10, 14], [4, chapter 3, section 14], [5, sections 27, 28] are well known: the
Schrödinger, Heisenberg, interaction and other ‘intermediate’ ones. Although they are
equivalent from the viewpoint of physically predictable results, these special representations of
the quantum mechanical formalism reflect its different sides. Correspondingly, the choice of
a concrete picture depends on the particular physical problem under investigation. Below we
consider certain general problems connected with these special pictures of motion of a quantum
system from the fibre bundle viewpoint on quantum mechanics proposed in this investigation.

2.1. Schrödinger picture

In fact, the bundle Schrödinger picture description of the motion of a quantum system is the
description we have been dealing with until now [1,2]. Its basic assertions will be summarized
in this section.

The states of a quantum system form a Hilbert bundle (F, π,M) whose base M is a C1

manifold, interpreted as a space (-time) model. The system state is described by a lifting � of
paths over (F, π,M),

� ∈ PLift(F, π,M) (2.1)

which also admits equivalent interpretation as a, generally, multiple-valued section along paths
in the same bundle. Along every path γ : J → M , interpreted as a trajectory (world line) of
some observer, the different time values of the bundle state vectors �γ (t) are connected via
equation (I.5.7), in which Uγ (t, s) is the evolution transport along γ from s to t , s, t ∈ J .
The state lifting � is generically a quantity variable in time evolving according to the
bundle Schrödinger equation (II.2.27). This equation, together with some initial condition,
is equivalent to the Schrödinger equation (initial-value problem) (II.2.28) for the evolution
transport U .

In the bundle description to a dynamical variable AAA corresponds a unique lifting of paths
A in the bundle of restricted morphisms of the system’s Hilbert bundle of states,

A ∈ PLift(morM(F, π,M)). (2.2)

The observable lifting A also admits a treatment as a, generally, multiple-valued morphism
along paths of (F, π,M). With respect to a reference path γ : J → M at some moment t ∈ J an
observable liftingA reduces to a mapAγ (t):Fγ(t) → Fγ(t) which, generally, is time dependent
regardless of the fact that in the Hilbert space description the corresponding observable A may
happen to be time independent. It (or its evolution) is explicitly given by (II.3.1).

Geometrically the maps Aγ (t) ‘live’ in the bundle space

FM
0 := {ϕx |ϕx :Fx → Fx, x ∈ M} = {ϕx |ϕx = ϕ|Fx , x ∈ M, ϕ ∈ MorM(F, π,M)}

(2.3a)
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of the bundle of point-restricted morphisms of (F, π,M) whose projection is

πM
0 :FM

0 → M πM
0 (ϕ) = xϕ (2.3b)

for ϕ ∈ FM
0 , where xϕ ∈ M is the unique element of M such that ϕ:Fxϕ → Fxϕ .

Since equations (I.4.5) and (II.3.3) are valid, the probabilistic interpretation of conventional
quantum mechanics is retained and the predictions of Hilbert bundle and Hilbert space versions
of quantum mechanics are identical.

Summing up, in the bundle Schrödinger picture, both the state liftings and observable
liftings change generically in time in the corresponding bundles as described above.

2.2. Heisenberg picture

The Heisenberg picture is suitable for analysing some properties of quantum systems, as
well as for a comparison between classical and quantum mechanics. In this picture the time
dependence is entirely shifted to the dynamical variables, i.e. to the observables representing
them, while the state vectors remain constant in time. In this section it will be proved that an
analogous transformation is also available in the bundle version of quantum mechanics.

Below we present two different ways of introduction of the bundle Heisenberg picture
leading, of course, to one and the same final result. The first one is based entirely on the bundle
approach and reveals its natural geometric character. The second one is a direct analogue of
the usual way in which one arrives at this picture.

2.2.1. Hilbert bundle introduction. According to [6, section 4] or [7, section 3] every linear
transport along paths is locally Euclidean, i.e. (see [6, section 4] for details and rigorous
results) along every path there is a field of (generally multiple-valued [6, remark 4.2]) bases,
called normal, in which its matrix is the unit matrix. Such a collection of bases is called
a normal frame along the corresponding path. In particular, along γ : J → M there exists
a frame

{{ẽγa (t)}—basis inFγ(t)
}

in which the matrix of the evolution transport Uγ (t, s) is
Ũγ (t, s) = 1I. Explicitly we can put

ẽγa (t) = Uγ (t, t0)e
γ
a (t0) (2.4)

where t, t0 ∈ J , γ is not a summation index and the basis {eγa (t0)} in Fγ(t0) is fixed [7, proof
of proposition 3.1] (cf [6, equation (4.2)])2. Because of (I.5.9), (II.2.21) and (II.2.22) the class
of frames normal along γ for the evolution transport is uniquely defined by any one of the
(equivalent) equalities:

Ũγ (t, t0) = 1I Γ̃γ (t) = 0 H̃m
γ (t) = 0. (2.5)

So, the matrix-bundle Hamiltonian vanishes in such a special frame and, consequently
(see (II.2.12)), the components of the bundle state vectors remain constant in time t , i.e.
Ψ̃γ (t) = const, but the vectors themselves are not necessary such as the normal frames along
γ are generally time dependent.

In the normal frame {ẽγa (t)}, defined above by (2.4), the components of Aγ (t) are

˜(Aγ (t))ab = 〈
ẽγa (t)|

(
Aγ |Fγ(t)

)
ẽ
γ

b (t)
〉
γ (t)

= 〈Uγ (t, t0)e
γ
a (t0)|Aγ (t)Uγ (t, t0)e

γ

b (t0)〉γ (t)
= 〈eγa (t0)|U−1

γ (t, t0)Aγ (t)Uγ (t, t0)e
γ

b (t0)〉γ (t) = (
AH
γ,t (t0)

)
ab

2 The so-defined field of bases is not uniquely defined at the points of self-intersection, if any, of γ . Evidently, it
is unique on any ‘part’ of γ without self-intersections. The last case covers the interpretation of γ as an observer’s
world line, in which it cannot have self-intersections. See [6, section 4] for details.
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where

AH
γ,t (t0) := U−1

γ (t, t0) ◦ Aγ (t) ◦ Uγ (t, t0):Fγ(t0) → Fγ(t0). (2.6)

Hence the matrix elements of Aγ (t) in {ẽγa (t)} coincide with those of AH
γ,t (t0) in {eγa (t0)}.

Consequently, due to (I.2.11), (II.3.2), (II.3.3), and (I.5.14), the mean value of A (along γ ) is

〈Aγ (t)〉t�γ
= (

Ãγ (t)
)
ab
�̃a
γ (t)�̃

b
γ (t)/〈�γ (t)|�γ (t)〉γ (t)

= (
A

H(t0)
γ,t

)
ab
�̃a
γ (t)�̃

b
γ (t)/〈�γ (t0)|�γ (t0)〉γ (t).

Hence, due to Ψ̃γ (t) = Ψ̃γ (t0), we have

〈Aγ (t)〉t�γ
= 〈AH

γ,t (t0)〉t0�γ
. (2.7)

So, the mean value of Aγ (t) in a state �γ (t) is equal to the mean value of AH
γ,t (t0) in the

state �γ (t0). Taking into account that the only measurable (observable) physical quantities
are the mean values [3, 5, 8], we infer that the descriptions of a quantum system along γ

at a moment t through either one of the pairs (�γ (t), Aγ (t)) and (�γ (t0), A
H
γ,t (t0)) are fully

equivalent. The former is the bundle Schrödinger picture of motion along γ , reviewed above in
section 2.1. The latter is the bundle Heisenberg picture of motion of the quantum system along3

γ . In it the time dependence of the bundle state vectors is entirely shifted to the observables
in conformity with (2.6). In this description the bundle state vectors are constant and do not
evolve in time. In contrast, in it the observables depend on time and act on one and the same
fibre of (F, π,M), the one to which belongs the (initial) bundle state vector. Their evolution
is governed by the Heisenberg form of the bundle Schrödinger equation (II.2.25) which can
be derived in the following way.

Substituting (I.5.10) and (II.3.1) into (2.6), we obtain

AH
γ,t (t0) = l−1

γ (t0)
◦ AH

t (t0) ◦ lγ (t0):Fγ(t0) → Fγ(t0) (2.8)

where (cf (2.6))

AH
t (t0) := U(t0, t) ◦ A(t) ◦ U(t, t0): F → F (2.9)

is the Heisenberg operator corresponding to A(t) in the Hilbert space description (see below).
A simple verification shows that

ih̄
∂ AH

t (t0)

∂t
= [ AH

t (t0),HH
t (t0)

]
− + ih̄

(
∂ A
∂t

)H

t

(t0). (2.10)

Here (∂ A/∂t)H
t (t0) is obtained from (2.9) with ∂ A/∂t instead of A and

HH
t (t0) = U−1(t, t0)H(t)U(t, t0) = ih̄U−1(t, t0)

∂ U(t, t0)
∂t

(2.11)

(cf (2.9)) with H(t)being the usual Hamiltonian in F (see (I.2.9)), i.e. HH
t (t0) is the Hamiltonian

in the Heisenberg picture.
Finally, from (2.8) and (2.10), we obtain

ih̄
∂AH

γ,t (t0)

∂t
= [

AH
γ,t (t0),H

H
γ,t (t0)

]
− + ih̄

(
∂ A
∂t

)H

γ,t

(t0) (2.12)

in which all quantities with subscript γ are defined according to (2.8). This is the bundle
equation of motion (for the observables) in the Heisenberg picture of motion of a quantum
system. It determines the time evolution of the observables in this description.

3 Notice that the bundle Heisenberg picture is with respect to some (reference) path γ . We shall comment on this
fact in section 2.2.3.
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2.2.2. Hilbert space introduction. Now we shall outline briefly how the above results can be
obtained by transferring the conventional Heisenberg picture of motion from the Hilbert space
F to its analogue in the Hilbert bundle (F, π,M).

The mathematical expectation of an observable A(t) in a state characterized by a state
vector ψ(t) with a finite norm is (see (I.2.11), (I.2.5) and (I.5.4))

〈 A(t)〉tψ = 〈ψ(t)| A(t)ψ(t)〉
〈ψ(t)|ψ(t)〉 = 〈ψ(t0)| U−1(t, t0)A(t)U(t, t0)ψ(t0)〉

〈ψ(t0)|ψ(t0)〉 .

Combining this with (2.9), we find

〈 A(t)〉tψ = 〈 AH
t (t0)〉t0ψ = 〈 AH

t (t0)〉t0ψH
t

(2.13)

ψH
t (t0) := ψ(t0). (2.14)

Thus the pair (ψ(t), A(t)) is equivalent to the pair (ψ(t0), AH
t (t0)) from the viewpoint of

observable quantities. The latter realizes the Heisenberg picture in F , i.e. in the Hilbert space
description of quantum mechanics. In it the state vectors are constant while the observables,
generally, change in time according to the Heisenberg form (2.10) of the equation of motion.

In the Hilbert bundle description to A and AH
t (t0) correspond the quantities (see (II.3.1)),

respectively, Aγ (t) = l−1
γ (t) ◦ A(t) ◦ lγ (t) and (see (2.9) and (I.5.10))

AH
γ,t (t0) = l−1

γ (t0)
◦ AH

t (t0) ◦ lγ (t0) = U−1
γ (t, t0) ◦ Aγ (t) ◦ Uγ (t, t0). (2.15)

Hence to the Heisenberg operator AH
t corresponds exactly the (Heisenberg) map AH

γ,t (t0)

introduced above by (2.6). In particular, to the Hamiltonian H(t) and its Heisenberg form
HH
t (t0), given by (2.9) for A = H or by (2.11) (cf (I.2.9)), correspond the mappings (see (II.3.1)

and (II.3.12)) Hγ (t) = l−1
γ (t) ◦ H(t) ◦ lγ (t) and (cf (2.8) and (2.11))

HH
γ,t (t0) = l−1

γ (t0)
◦ HH

t (t0) ◦ lγ (t0) = U−1
γ (t, t0) ◦Hγ (t) ◦ Uγ (t, t0) (2.16)

the latter of which is exactly that entering in (2.12).
A trivial verification shows that the mappings AH

γ,t (t0) satisfy the bundle Heisenberg
equation of motion (2.12).

Thus both approaches, Hilbert bundle and Hilbert space ones, are self-consistent and lead
to one and the same final result, the bundle Heisenberg picture of motion.

2.2.3. Summary and inferences. According to the above results, in the bundle Heisenberg
picture the state of a quantum system is represented by a time-independent bundle state vector

�H
γ,t (t0) = �γ (t0) ∈ Fγ(t0) (2.17)

and every dynamical variable AAA is described by a time-dependent mapping

AH
γ,t (t0) := U−1

γ (t, t0) ◦ Aγ (t) ◦ Uγ (t, t0) ∈ (πM
0 )−1(γ (t0)) (2.18)

from the fibre over γ (t0) of the bundle morM(F, π,M) = (FM
0 , πM

0 ,M) of point-restricted
morphisms over M of 4 (F, π,M). Here γ : J → M is a path in the base M , t ∈ J is arbitrary
and t0 ∈ J is arbitrarily fixed and interpreted as an initial moment at which the initial conditions
determining the system’s state and dynamical variables are supposed to be known.

By virtue of (2.7), (2.17) and (II.3.3), the mean values of a dynamical variable AAA are
independent of the method of their calculation:

〈A〉t,γ� = 〈AH
γ,t (t0)〉t0�H

γ
= 〈 A〉t,γ� = 〈 AH

t (t0)〉t0�H
γ
. (2.19)

4 For the notation and mathematical details, see sections 2.2.1 and I.3.1.
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Hence the predictions of quantum mechanics are identical in the Hilbert bundle and Hilbert
space descriptions, as well as in their presentations in the Schrödinger and Heisenberg pictures.

We want to emphasize three features of the bundle Heisenberg picture as introduced
above. First, in it the states are not represented via state liftings as in the Schrödinger picture,
but by a particular bundle state vector corresponding to a concrete value of the state lifting
of the reference path γ in the Schrödinger picture. Second, in it the dynamical variables are
described via (time-dependent) mappings whose domain and range is the fibre over the same
fixed point of the reference path γ in the system’s Hilbert bundle, while in the Schrödinger
picture the corresponding objects are liftings of paths in the bundle of restricted morphisms
of the Hilbert bundle of states. Third, the bundle Heisenberg picture, as formulated above,
is explicitly observer dependent in a sense that it is always defined with respect to some
reference path5 γ . This fact is in contrast to the Schrödinger picture, which is formulated in
an observer-independent way, only in terms of liftings of paths and transports along paths in
suitable bundles and in which the observer dependence is introduced via the initial conditions.
Below an analogous description for the Heisenberg picture will be found too.

An interesting interpretation of the Heisenberg picture can be given in the bundle
morM(F, π,M) = (F0, π0,M) of point-restricted morphisms over M of (F, π,M) (see
section 2.1 or I.3.1). Since U is a transport along paths in the bundle (F, π,M) of states,
then, according to (I.3.47) (see also [9, equation (3.12)]), it induces a transport ◦U along paths
in morM(F, π,M) whose action on a map Aγ (s):π−1(γ (s)) → π−1(γ (s)) along γ : J → M

is
◦Uγ (t, s)(Aγ (s)) := Uγ (t, s) ◦ Aγ (s) ◦ Uγ (s, t) ∈ (πM

0 )−1(γ (t)). (2.20)

Comparing, on one hand, this definition with (2.6) and, on the other hand, (2.17)
with (I.5.7), we obtain respectively

AH
γ,t (t0) = ◦Uγ (t0, t)(Aγ (t)) (2.21)

�H
γ,t (t0) = Uγ (t0, t)�γ (t). (2.22)

Consequently the pair of transports (U, ◦U) along paths is just the mapping which maps the
bundle Schrödinger picture into the bundle Heisenberg picture.

A simple corollary of (2.21) and (I.3.19) is that the Heisenberg operators AH
γ,t (t0) are

connected by

AH
γ,t (t1) = ◦Uγ,t (t1, t0)A

H
γ,t (t0) (2.23)

for every initial moment t1, t0 ∈ J . Obviously, the map AH
γ,t : t0 �→ AH

γ,t (t0) for every t0 ∈ J

is a lifting of γ from M to the bundle space of the bundle morM(F, π,M). Therefore the
mapping AH: γ �→ AH

γ,t is a lifting of paths in morM(F, π,M),

AH ∈ PLift(morM(F, π,M)) (2.24)

which, by virtue of (2.23), is ◦U -transported along every path γ . Comparing (2.21) and (I.3.39),
we infer that AH coincides with the lifting ◦U ∈ PLift(morM(F, π,M)) generated by ◦U (see
definition I.3.5). This observation allows a new form of the equations of motion for the
observables in the Heisenberg picture to be found, which replaces the Schrödinger equation in
it.

Let ◦D be the derivation along paths generated by the induced transport ◦U (see also [6,7]).
In conformity with (I.3.47), we have ◦D: γ �→ ◦Dγ : s �→ ◦Dγ

s with

◦Dγ
s (A) := lim

ε→0

{
1

ε

[◦U(s, s + ε)
(
Aγ (s + ε)

) − Aγ (s)
]}
. (2.25)

5 Such dependence exists also in the conventional Hilbert space description of quantum mechanics, but it is so deeply
hidden that it seems not to have been mentioned until now.
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A simple calculation shows that in a local field of bases the matrix of ◦Dγ
s (A), in accordance

with (I.3.49), is

[◦Dγ
s (A)] = −[

Aγ (s),Γγ (s)
]
− +

∂Aγ (s)

∂s
(2.26)

where Γγ (s) := [
�ba(s; γ )

]
:= ∂Uγ (s, t)/∂t

∣∣
t=s is the matrix of the coefficients of U (not of

◦U !). From here, using (II.2.22) and (II.3.14), after some matrix algebra, one finds the explicit
form of (2.25):

◦Dγ
t (A) = 1

ih̄
[Aγ (t),Hγ (t)]− +

(
∂ A
∂t

)
γ (t)

(2.27)

where the last term is defined via (II.3.1) and H is the bundle Hamiltonian, given by (II.3.12).
The last result, together with (2.6), shows that the Heisenberg equation of motion (2.12)

is equivalent to

∂AH
γ,t (t0)

∂t
= Uγ (t0, t) ◦ (◦

D
γ
t (A)

) ◦ Uγ (t, t0). (2.28)

By the way, this equation is also an almost trivial corollary of (2.25), (2.21) and (I.3.19).
However, such a ‘quick’ derivation leaves the problem for the relation (equivalence) between
equations (2.28) and (2.12) open.

Now the analogue of (II.2.28) is
◦Dγ

t ◦ (◦U) = 0 ◦U
γ
(t0, t0) = idπ−1

0 (γ (t0)). (2.29)

From here and (2.23), we derive the equation of motion as
◦Dγ

t0

(
AH

) = 0 (2.30)

which is another equivalent form of (2.12) or (2.28).
Since γ : J → M and t ∈ J are arbitrary, the last equation is equivalent to

◦D(AH) = 0. (2.31)

This is the bundle Heisenberg equation of motion (for the observables) which replaces the
bundle Schrödinger equation (II.2.27) in the Heisenberg picture. It does not depend on the
reference path γ and, in this sense, is observer independent. As in the Schrödinger picture
(see section 2.1) here the observer dependence is introduced via the initial conditions at some
moment t0 ∈ J . This is clearly seen from (2.29) regardless of the fact that the equation of this
initial-value problem can be rewritten as

◦D(U) = 0 (2.32)

which is independent of the reference path γ .
The Heisenberg bundle state vector (2.22) admits a treatment analogous to that ofAH

γ,t (t0).
Indeed, define a lifting of paths

�H ∈ PLift(F, π,M) (2.33)

by �H: γ �→ �H
γ,t with �H

γ,t : t0 �→ �H
γ,t (t0), t0 ∈ J . By virtue of (2.21), this lifting is

U -transported along every path γ , coincides with the lifting U generated by the evolution
transport U (see definition I.3.5) and, in conformity with (I.3.40), satisfies the equation

D(�H) = 0 (2.34)

withD being the derivation along paths generated byU . Pro forma the last equation coincides
with the bundle Schrödinger equation (II.2.27) but its meaning is completely different: in the
Heisenberg picture the system’s state is described by a solution of (2.34) at a single point of
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some path, while in the Schrödinger picture the state is represented via the solution of (II.2.27)
along a whole path, i.e. in the former case the state is given by a fixed bundle state vector,
while in the latter one via a lifting of paths.

Now a brief comment on the beginning of section 2.2.1 is in order. It was shown that in
a normal frame (2.4), described via some of the conditions (2.5), the matrix elements of an
observable lifting of paths in the Schrödinger picture coincide with those in the Heisenberg

picture, (̃A(t))ab = (AH
γ,t (t0))ab. In this frame the components of a bundle state vector �γ (t)

are �̃a
γ (t) = (

U−1
γ (t, t0)

)a
b
�b
γ (t) = (

Uγ (t0, t)
)a
b
�b
γ (t) = �b

γ (t0) = (
�H
γ,t (t0)

)a
. These

results can be expressed by the assertion that in a normal frame the Schrödinger picture of
motion is identical to the Heisenberg one.

2.3. ‘General’ picture

The Schrödinger and Heisenberg pictures for describing a quantum system are not the only
possible ones. Any transformation of the state vectors and observables preserving the scalar
products leads to a new ‘picture’. For the investigation of different problems, different pictures
may turn out to be suitable. Below we present the general scheme by means of which such
special representations of the quantum mechanical motion are generated.

2.3.1. Introduction. The idea of a particular picture of motion is the simultaneous
transformation of the (bundle) state vectors and the observables (observable liftings) in such
a way that the scalar products remain unchanged. As a consequence of this, the physically
predictable results of the theory are identical with the ones before the transformation. Formally
one should proceed as follows.

Let V be a ‘two-point’ lifting of paths in morM(F, π,M), i.e. for every γ : J → M , we
have V : γ �→ Vγ with Vγ : (s, t) �→ Vγ (s, t) where6 Vγ (s, t):Fγ(s) → Fγ(t). Suppose the
maps Vγ (t, s):Fγ(s) → Fγ(t), s, t ∈ J are linear, of class C1, and unitary, i.e. (see (I.3.12))

V
‡
γ (t, s) = V −1

γ (s, t), where V −1
γ (s, t) is the left inverse of 7 Vγ (s, t). A simple calculation

shows that

〈�γ (t)|�γ (t)〉γ (t) = 〈�V
γ,t (t1)|�V

γ,t (t1)〉γ (t1) (2.35)

〈Aγ (t)〉t�γ
= 〈AV

γ,t (t1)〉t1�V
γ,t

(2.36)

where (I.3.7) was used, t1 ∈ J , and

�V
γ,t (t1) := Vγ (t1, t)�γ (t) ∈ Fγ(t1) (2.37)

AV
γ,t (t1) := Vγ (t1, t) ◦ Aγ (t) ◦ V −1

γ (t1, t):Fγ(t1) → Fγ(t1). (2.38)

Consequently the pairs (�γ (t), Aγ (t)) and (�V
γ,t (t1), A

V
γ,t (t1)) provide a completely

equivalent description of a given quantum system as the physically predictable results on their
base are identical. The latter way of describing a quantum system will be called the V -picture
or general picture of motion. For t1 = t and Vγ (t, t) = idFγ (t) it coincides with the Schrödinger
picture and for t1 = t0 and Vγ (t0, t) = Uγ (t0, t) it reproduces the Heisenberg picture.

The analogues of equations (2.36)–(2.38) in the Hilbert space description, when they are
written in the Hilbert space F , which is the typical fibre of the Hilbert bundle (F, π,M) of

6 An example of such map V is a transport along paths in morM(F, π,M).
7 Every unitary (and hence Hermitian) linear transport along paths in morM(F, π,M) provides an example of V
with the required properties. In particular, for V can be taken the transport ◦L associated with some unitary linear
transportL along paths in (F, π,M). The choiceL = U ,U being the evolution transport, returns us to the Heisenberg
picture—vide infra.
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states, are respectively

〈 A(t)〉tψ = 〈 AV
t (t1)〉t1ψV

t

( = 〈Aγ (t)〉t�γ

)
(2.39)

ψ V
t (t1) := V(t1, t)ψ(t) ∈ F (2.40)

AV
t (t1) := V(t1, t) ◦ A(t) ◦ V−1(t1, t): F → F (2.41)

where V(t1, t): F → F is a linear and unitary operator, i.e. V†(t1, t) = (V(t, t1))−1, which
corresponds to the mapping V (t1, t):Fγ(t) → Fγ(t1) via (cf (I.5.10))

Vγ (t1, t) = l−1
γ (t1)

◦ V(t1, t) ◦ lγ (t). (2.42)

The description of the quantum evolution in the Hilbert space F viaψ V
t (t1) and AV

t (t1) is
the V -picture of motion in F . Besides, due to (I.4.3), (II.3.1) and (2.37)–(2.42), the following
relations are valid:

� V
γ,t (t1) := l−1

γ (t1)

(
ψ V
t (t1)

) = �V
γ,t (t1) (2.43)

AV
γ,t (t1) := l−1

γ (t1)
◦ AV

t (t1) ◦ lγ (t1) = AV
γ,t (t1). (2.44)

According to (2.42)–(2.44), the sets of equalities (2.36)–(2.41) are equivalent; they are, respec-
tively, the Hilbert bundle and the (usual) Hilbert space descriptions of the V -picture of motion.

2.3.2. Equations of motion. The equations of motion in the V -picture cannot be obtained
directly by differentiating (2.37) and (2.38) with respect to t because derivatives such as
∂Vγ (t1, t)/∂t are not (‘well’) defined due to Vγ (t1, t):Fγ(t) → Fγ(t1). They can be derived
by differentiating the matrix equations corresponding to (2.37) and (2.38), but below we shall
describe another method, which explicitly reveals the connections between the conventional
and the bundle descriptions of quantum evolution. The easiest way to derive the equations
of motion in the V -picture is to transform the conventional Schrödinger equations (by means
of (2.40)) into the V -picture and then to transform the obtained equations into their bundle
versions. With respect to the observables, a procedure similar to that of section 2.2.1 should
be followed.

Differentiating (2.40) with respect to t , substituting into the thus-obtained result the
Schrödinger equation (I.2.6) and introducing the modified Hamiltonian

H̃(t) := H(t)− VH(t1, t) (2.45)

VH(t1, t) := ih̄
∂ V−1(t1, t)

∂t
◦ V(t1, t) = −ih̄V−1(t1, t) ◦ ∂ V(t1, t)

∂t
(2.46)

we find the equation of motion for the state vectors in the V -picture as

ih̄
∂ψ V

t (t1)

∂t
= H̃ V

t (t1)ψ
V
t (t1). (2.47)

Here

H̃ V
t (t1) = V(t1, t) ◦ H̃(t) ◦ V−1(t1, t) = HV

t (t1)− VHV
t (t1) (2.48)

where
HV
t (t1) := V(t1, t) ◦ H(t) ◦ V−1(t1, t)

VHV
t (t1) := V(t1, t) ◦V H(t1, t) ◦ V−1(t1, t) = −ih̄

∂ V(t1, t)
∂t

◦ V−1(t1, t)
(2.49)

is the V -form of (2.45).
The equation of motion for the observables in theV -picture inF is obtained in an analogous

way. Differentiating (2.41) with respect to t and applying (2.49), we find

ih̄
∂ AV

t (t1)

∂t
= [ AV

t (t1),VHV
t (t1)

]
− + ih̄

(
∂ A(t)
∂t

)V

t

(t1). (2.50)
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The bundle equations of motion in the V -picture are corollaries of those already obtained
in F . In fact, differentiating the first equalities from (2.43) and (2.44) with respect to t and
then using (2.47), (2.50), (2.43) and (2.44), we, respectively, obtain

ih̄
∂�V

γ,t (t1)

∂t
= H̃ V

γ,t (t1)�
V
γ,t (t1) (2.51)

ih̄
∂AV

γ,t (t1)

∂t
= [

AV
γ,t (t1),V H

V
γ,t (t1)

]
+ ih̄

(
∂ A(t)
∂t

)V
γ,t

(t1). (2.52)

Here

H̃ V
γ,t (t1) = l−1

γ (t1)
◦ H̃ V

t (t1) ◦ lγ (t1) = Vγ (t1, t) ◦ H̃γ (t) ◦ V −1
γ (t1, t)

VH
V
γ,t (t1) = l−1

γ (t1)
◦V HV

t (t1) ◦ lγ (t1) = Vγ (t1, t) ◦VHγ (t1, t) ◦ V −1
γ (t1, t)

(2.53)

where H̃γ (t) := l−1
γ (t) ◦ H̃(t) ◦ lγ (t) and VHγ (t1, t) = −ih̄V −1(t1, t) ◦ lγ (t1) ◦ ∂ V(t1,t)

∂t
◦ lγ (t),

are, respectively, the modified and ‘additional’ Hamiltonians in the V -picture (cf (2.45), (2.38)
and (2.44)).

2.3.3. Evolution operator and transport. In the V -picture the evolution operator U V in F
and evolution transport UV in (F, π,M) are defined, respectively, by (cf (I.2.1) and (I.5.7))

ψ V
t (t1) = U V(t, t1, t0)ψ V

t0
(t1) (2.54)

�V
γ,t (t1) = UV

γ (t, t1, t0)�
V
γ,t0
(t1). (2.55)

Due to (2.47) and (2.51), they satisfy the following initial-value problems:

ih̄
∂ U V(t, t1, t0)

∂t
= H̃ V

t (t1) ◦ U V(t, t1, t0) U V(t0, t1, t0) = idF (2.56)

ih̄
∂UV

γ (t, t1, t0)

∂t
= H̃ V

γ,t (t1) ◦ UV
γ (t, t1, t0) UV

γ (t0, t1, t0) = idFγ (t1)
. (2.57)

The relations between the evolution operator or evolution transport in the Schrödinger
picture and V -picture can be found as follows. On one hand, combining (2.54), (2.40)
and (I.2.1) and, on the other hand, using (2.55), (2.37) and (I.5.7), we respectively obtain

U V(t, t1, t0) = V(t1, t) ◦ U(t, t0) ◦ V−1(t1, t0): F → F (2.58)

UV
γ (t, t1, t0) = Vγ (t1, t) ◦ Uγ (t, t0) ◦ V −1

γ (t1, t0):Fγ(t1) → Fγ(t1). (2.59)

Notice, in the Heisenberg picture, we have

UH(t, t0, t0) = idF UH
γ (t, t0, t0) = idFγ (t0)

. (2.60)

Substituting in (2.59) the equalities (2.42) and (I.5.10) and taking into account (2.58), we
find the connection between the evolution operator and transport in the V -picture as

UV
γ (t, t1, t0) = l−1

γ (t1)
◦ U V(t, t1, t0) ◦ lγ (t1). (2.61)

2.3.4. Interaction interpretation. The equations of motion derived here have a direct practical
application in connection with the approximate treatment of the problem of quantum evolution
of state vectors and observables (cf [3, chapter 8, section 14]). Indeed, H(t) =V H(t, t1)+H̃(t)
is fulfilled by (2.45). We can consider

H(0)(t) := VH(t1, t) = ih̄
∂ V−1(t1, t)

∂t
◦ V(t1, t) (2.62)

as a given approximate (unperturbed) Hamiltonian of a quantum system with evolution operator
U (0)(t1, t) = V(t1, t). (In this case H(0)(t) is independent of t1 and V−1(t1, t) = V(t, t1).)



4946 B Z Iliev

Then H̃(t) may be regarded, in some ‘good’ cases, as a ‘small’ correction to H(0)(t). In
other words, we can say that H(0)(t) is the Hamiltonian of the ‘free’ system, while H(t) is its
Hamiltonian when a given interaction with Hamiltonian H̃(t) is introduced.

In this interpretation the V -picture is the well known interaction picture. In it one
supposes to be given the basic (zeroth-order) Hamiltonian H(0)(t) := VH(t, t1) and the
interaction Hamiltonian H(I )(t) = H̃(t). On their base can be computed all other quantities
of the system described by them. In particular, all of the above results hold true for
V(t1, t) = U (0)(t1, t) = Texp

( ∫ t1
t

H(0)(τ ) dτ/ih̄
)
. Besides, in this case the total evolution

operator U(t, t0) = Texp
( ∫ t

t0
H(τ ) dτ/ih̄

)
splits into

U(t, t0) = U (0)(t, t0) ◦ U (I )(t, t0) (2.63)

with U (I )(t, t0) := Texp
( ∫ t

t0

(H(I )
)U (0)(t0)

τ
dτ/ih̄

)
, where

(H(I )
)U (0)(t0)

τ
is an operator given

by (2.48) for H̃ = H(I ), t1 = t0 and V(t0, t) = U (0)(t0, t). Now the equations of motion (2.47)
and (2.50) take, respectively, the form

ih̄
∂ψ(I)(t)

∂t
= (H(I )

)t
U (0) (t0)ψ

(I)(t) (2.64)

ih̄
∂ A(I )(t)

∂t
= [ A(I )(t),

(H(I )
)t

U (0) (t0)
]
− + ih̄

(
∂ A
∂t

)U (0)

t

(t0) (2.65)

where ψ(I)(t) := ψ U (0)

t (t0) and A(I )(t) := AU (0)

t (t0). Up to notation, the last two equations
coincide respectively with equations (55) and (56) of [3, chapter 8, section 15].

The bundle form of the interaction interpretation of the V -picture of motion will not be
presented here as an almost evident one.

2.3.5. Some inferences. Partially the conclusions of section 2.2.3 are valid mutatis mutandis
in the general V -picture of motion. In short, their essence is the following.

In the bundle V -picture the system’s state is represented by a, generally, time-dependent
bundle state vector (2.37) from a fixed fibre over the reference path γ . The dynamical variables
are described via, generally, time-dependent maps acting on this single fibre. Due to (2.29),
the Schrödinger and the V -picture are identical from the viewpoint of predictable physical
results.

IfV happens to be a (Hermitian linear) transport along paths in the bundle morM(F, π,M),
then the whole concluding part of section 2.2.3, beginning with the paragraph containing
equation (2.20), is valid in the case of the V -picture provided V is taken for ◦U and �V for
�H, and byD is understood the derivation generated by V along paths. (The particular choice
V = ◦U reduces the V -picture to the Heisenberg one.) However, if V is not a transport along
paths, the conclusions from the last part of section 2.2.3 cannot be applied.

3. Integrals of motion

The integrals of motion, also called constants of motion, are quantum mechanical analogues
of the preserved quantities in classical physics [10, chapter 5, sections 19, 20, chapter 8,
section 12]. They provide invariant characteristics of a quantum system which do not change
in time. An important example of this kind is the energy of a system with an explicitly time-
independent Hamiltonian. In more special cases, such quantities are the angular momentum,
parity, etc. The aim of this section is the development of the general formalism of integrals of
motion in the bundle version of quantum mechanics.
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3.1. Hilbert space description

Usually [3, chapter 8, section 12], [5, section 28] a dynamical variable explicitly not depending
on time is called an integral (or a constant) of motion if the corresponding observable is time
independent in the Heisenberg picture of motion. Due to (2.10) this means

0 = ih̄
∂ AH

t (t0)

∂t
= [ AH

t (t0),HH
t (t0)

]
−. (3.1)

Hence, if ∂ A(t)/∂t = 0, then A is an integral of motion if and only if it commutes with the
Hamiltonian. By virtue of (2.9), (2.41) and (2.50), this result is true in any picture of motion.

If (3.1) holds, then ∂ A(t)/∂t = 0 and (2.9) imply

A(t) = A(t0) = AH
t (t0) = AH

t0
(t0). (3.2)

From (2.9) and (3.2) one easily obtains that (3.1) (under the assumption ∂ A(t)/∂t = 0) is
equivalent to the commutativity of the observable and the evolution operator:

[ A(t0), U(t0, t)]− = 0 (3.3)

which, in connection with further generalizations, is better written as

A(t0) ◦ U(t0, t) = U(t0, t) ◦ A(t). (3.3′)

It is almost evident that the mean values of the integrals of motion are constant:

〈 A(t)〉tψ = 〈 AH
t (t0)〉t0ψ = 〈 AH

t0
(t0)〉t0ψ = 〈 A(t0)〉t0ψ. (3.4)

In particular, if ψH(t) = ψ(t0) is an eigenvector of AH
t (t0) with eigenvalue a, i.e.

AH
t (t0)ψ

H(t) = aψH(t), then a = const as 〈 AH
t (t0)〉t0ψH = a. Besides, in the Schrödinger

picture we have A(t0)ψ(t) = aψ(t).
Evidently, the identity map idF , which plays the rôle of the unit operator in F , is an integral

on motion. For it every state vector is an eigenvector with 1 ∈ R as eigenvalue.
Now we shall generalize the above material in the case when ∂ A(t)/∂t may be different

to zero.

Definition 3.1. A dynamical variable, which may be explicitly time dependent, is an integral (or
a constant) of motion if the mean values of the corresponding observable are time independent.

According to (II.3.3), (2.36) and (2.39) this definition does not depend on the used concrete
picture of motion. Hence, without loss of generality, we consider at first the Schrödinger picture
in F .

Therefore, by definition, A(t): F → F is an integral of motion if

〈 A(t)〉tψ = 〈 A(t0)〉t0ψ (3.5)

for some given instant of time t0.
Due to (I.2.11), (I.2.1), (I.2.5) and (2.9) the last equation is equivalent to

A(t) = U(t, t0) ◦ A(t0) ◦ U(t0, t) = AH
t0
(t) (3.6)

or to

U(t0, t) ◦ A(t) = A(t0) ◦ U(t0, t). (3.7)

Thus (3.3′) remains true in the general case, when it generalizes the commutativity of an
observable and the evolution operator; in fact, in this case we can say, by definition, that A
and U commute iff (3.7) holds.
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Differentiating (3.6) with respect to t and using (I.2.9), we see that A is an integral of
motion iff

ih̄
∂ A(t)
∂t

+ [ A(t),H(t)]− = 0. (3.8)

For ∂ A(t)/∂t = 0 this equation reduces to (3.1). Indeed, according to equations (2.9)
and (2.10), in the Heisenberg picture (3.8) is equivalent to

0 = ih̄

(
∂ A(t)
∂t

)H

t

(t0) +
[ AH

t (t0),HH
t (t0)

]
− = ih̄

∂ AH
t (t0)

∂t
(3.9)

which proves our assertion. Besides, from (3.9) it follows that

AH
t (t0) = AH

t0
(t0) = A(t0) (3.10)

but now A(t0) is generally different from A(t). In this way we have proved that an observable
is an integral of motion iff in the Heisenberg picture it coincides with its initial value in the
Schrödinger picture.

Analogously to the explicitly time-independent case considered above, now one can easily
prove that, if some state vector is an eigenvector for A with an eigenvalue a, then A is an
integral of motion iff a is time independent8, i.e. a = const.

3.2. Hilbert bundle description

The next definition is a bundle version of definition 3.1.

Definition 3.1′. A dynamical variable is called an integral of motion if the corresponding
observable lifting has time-independent mean values.

So, if A is the lifting of paths corresponding to a dynamical variable AAA (see section II.3),
then AAA (or A) is an integral of motion iff

〈A〉t,γ� := 〈Aγ (t)〉t�γ
= 〈Aγ (t0)〉t0�γ

=: 〈A〉t0,γ� (3.11)

which, due to (II.3.3) is equivalent (and equal) to (3.5). Consequently, definitions 3.1 and 3.1′

are equivalent: AAA is an integral of motion in the Hilbert space description iff it is such in
the Hilbert bundle one. Therefore we can simply say that a dynamical variable is integral of
motion if its mean values are time independent.

From (3.6), (I.5.7), (II.3.2), (I.3.7), (I.5.14), (2.15) and (2.20), we see that (3.11) is
equivalent to

Aγ (t) = Uγ (t, t0) ◦ Aγ (t0) ◦ Uγ (t0, t) = ◦Uγ (t, t0)(A(t0)) = AH
γ,t0
(t) (3.12)

where ◦U is the transport associated with U in morM(F, π,M).
A feature of the Hilbert bundle description is that in it, in contrast to the Hilbert space

one, we cannot directly differentiate with respect to t maps such as Aγ (t):Fγ(t) → Fγ(t)
and Uγ (t, t0):Fγ(t0) → Fγ(t). So, to obtain the differential form of (3.12) (or (3.11)), we
differentiate with respect to t the matrix form of (3.12) in a given field of bases (see section II.2).
Thus, using (II.2.18), we find

ih̄
∂Aγ (t)

∂t
+

[
Aγ (t),H

m
γ (t)

]
− = 0. (3.13)

8 In fact, in this case we have A(t)ψ(t) = a(t)ψ(t) for ψ(t) satisfying ih̄ dψ (t)
dt = H(t)ψ(t). The integrability

condition for this system of equations (with respect to ψ(t)) is ih̄ ∂ A(t)
∂t

+ [ A(t),H(t)]− = ih̄ da (t)
dt idF from where the

above result follows.
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Due to (II.2.22) and (II.2.32), this equation is the local matrix form of the invariant equation9(
D̃
γ
t (A)

)
(�) = 0 (3.14)

for every state lifting �.
Consequently a dynamical variable is an integral of motion iff the induced derivative

along paths of the corresponding observable lifting has a vanishing action on the state liftings.
If in some basis Aγ (t) = const = Aγ (t0), then, with the help of (3.8), we obtan

[Aγ (t),H
m
γ (t)]− = 0, i.e. the matrix of Aγ and the matrix-bundle Hamiltonian commute. It

is important to note that from here there does not follow the commutativity of the maps Aγ (t),
representing an observable by (II.3.1), and the bundle Hamiltonian (II.3.12) because the matrix
of the latter is connected with the matrix-bundle Hamiltonian through (II.3.14).

If the bundle state vector �γ (t) is an eigenvector for Aγ (t), that is Aγ (t)�γ (t) =
a(t)�γ (t), a(t) ∈ R, then 〈Aγ (t)〉t�γ

= a(t). Hence from (3.6) it follows that Aγ is an
integral of motion iff a(t) = const = a(t0).

Rewriting equation (3.13) in the form of Lax pair equation [11]
∂

∂t
Aγ (t) = − 1

ih̄
[Aγ (t),H

m
γ (t)]− = [Aγ (t),Γγ (t)]− (3.15)

where (II.2.22) was taken into account, we see that AAA is an integral of motion iff in some (and
hence in any) field of bases the matrices Aγ (t) and Γγ (t) form a Lax pair.

It is known [12, section 2] that the Lax pair equation (3.15) is invariant under
transformations of a form

Aγ (t) �→ WAγ (t)W
−1 Γγ (t) �→ WΓγ (t)W

−1 − ∂W

∂t
W −1 (3.16)

where W is a nondegenerate matrix, possibly depending on γ and t in our case. Hence
Aγ (t) transforms as a tensor while Γγ (t) transforms as a matrix of the coefficients of a linear
connection. These observations fully agree with our results of section II.2, expressed by
equations (II.2.5) and (II.2.23) with (Ω�(t; γ ))−1 = W , and give independent arguments for
treating (up to a constant) the matrix-bundle Hamiltonian as a gauge (connection) field.

Another invariant bundle necessary and sufficient condition for a dynamical variable to
be an integral of motion can be found as follows. In the Heisenberg picture (3.11) transforms
to

〈AH
γ,t (t0)〉t0�γ

= 〈AH
γ,t0
(t0)〉t0�γ

(3.17)

which is equivalent to (cf (3.10))

AH
γ,t (t0) = AH

γ,t0
(t0)

( = Aγ (t0)
)
. (3.18)

So, due to (2.12), an observable lifting A is an integral of motion if and only if (cf (3.9))

0 = ih̄
∂AH

γ,t (t0)

∂t
= [

AH
γ,t (t0),H

H
γ,t (t0)

]
− + ih̄

(
∂ A
∂t

)H

γ,t

(t0). (3.19)

This equation, according to (2.28), is equivalent to (cf (3.14))
◦Dγ

t (A) = 0. (3.20)

Since γ and t are arbitrary, we can rewrite the last equation as
◦D(A) = 0. (3.21)

We can paraphrase this result by stating that a dynamical variable is an integral of motion iff the
corresponding observable lifting is linearly transported (along paths) by means of the transport
◦U associated with the evolution transport U . The last result is explicitly expressed by (3.12).

9 Recall that the induced derivation D̃ along paths was defined via (I.3.35)–(I.3.37).
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Therefore a dynamical variable is an integral of motion iff the corresponding observable
lifting of paths in morM(F, π,M) has a vanishing derivative with respect to the derivation
along paths in morM(F, π,M) induced by the evolution transport. According to
definition I.3.5 (see also (I.3.39) and (I.3.40)) and equations (3.12) and (3.20), the same
result can be expressed by saying that a dynamical variable is an integral of motion iff the
corresponding observable lifting is a lifting of paths generated by the evolution transport.
Paraphrasing (see (3.12)), we can also assert that a dynamical variable is an integral of motion
iff the corresponding observable lifting of paths is ◦U -transported along the paths in the base
M of the bundle morM(F, π,M).

To conclude, we notice that the descriptions of the integrals of motion in the Hilbert space
F and in the Hilbert bundle (F, π,M) are completely equivalent because of (II.3.1) and (I.4.1).

4. Conclusion

As we have seen, the different pictures of motion (Schrödinger, Heisenberg etc) of quantum
mechanics have their natural analogues in the bundle approach to it. Any one of them simplifies
one or other aspect of the theory and is suitable for consideration of corresponding concrete
problems. The integrals of motion, investigated here from the bundle viewpoint, are a typical
example of this kind in which the Heisenberg picture of motion is the most suitable one. We
have derived necessary and sufficient invariant bundle conditions for a dynamical variable to
be an integral of motion.

Further in this series, we intend to consider problems connected with fibre bundle
description of mixed states, evolution transport curvature, interpretation of the Hilbert bundle
description of quantum mechanics and its possible developments.
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